Mucous membrane pemphigoid: our 14 years' experience

María del Pilar Beruschi¹, Mónica Bolatti², Sandra Marinescu³, Claudia Ardissone⁴, Laura López⁴, Jorge O. Zárate⁵, Eduardo Zeitlin⁶, Ana Kaminsky⁷, Elina Dancziger⁸

Abstract

Introduction. Mucous membrane pemphigoid includes a group of subepithelial immunobullous diseases mainly affecting mucous membranes and occasionally the skin. Evolution is chronic and progressive, leading to cicatricial sequelae, which produce morbidity, disability, and sometimes death. **Objective:** To describe epidemiological and clinical aspects, and the evolution of mucous and cutaneous lesions in our patients.

Materials and methods. The retrospective, observational, and descriptive study included 41 patients with confirmed mucous membrane pemphigoid diagnosis consulting the Dermatology Department between 1994 and 2008. Ocular involvement was graded using the Foster staging system. Each patient received systemic and local treatment.

Results. Thirty nine patients had only ocular involvement and 2 patients had ocular, oral and cutaneous disease, with female predominance of the disease. Mean age was 60 years, 46.34 percent had history of severe ocular injury, 17.07 percent had used topical glaucoma medications, and 80.48 percent consulted for chronic conjunctivitis. In 60.96 percent of the cases, diagnosis was confirmed in advanced stages of ocular disease. 62.41 percent of patients had over 5 years evolution before diagnosis. Cutaneous and oral lesions responded to therapy in less than 2 months. Ocular lesions remission according to stage was as follows: stage I, 83.33 percent; stage II, 40 percent; and stage III, 30.43 percent. No immunosuppressive treatment was given in stage IV. No improvement was achieved in terminal ocular disease patients.

Conclusion. Ocular involvement is prognostic. Diagnosis was made in advanced stages of ocular disease. Remission was achieved only with early treatment. (Dermatol Argent 2009; 15(4):260-266).

Key words: Mucous membrane pemphigoid, cicatricial pemphigoid..

Reception date: 20/5/09 | Approval date: 15/7/09

- 1. Staff Physician of Dermatology Department. Hospital General de Agudos "C. Durand".
- 2. Staff Physician of Oculoplasty Department. Hospital de Oftalmología "P. Lagleyze".
- Emergency Physician. Hospital "P. Lagleyze".
 Dermatologist.
- Director of Ophtalmology and Visual Research Laboratory. Pathology Department, UBA.
- 6. Head of Pathology Department. Hospital "C. Durand".
- 7. Named Professor of Dermatology.
- Head of Dermatology Department. Hospital "C. Durand". Hospital General de Agudos "C. Durand". Autonomous City of Buenos Aires, Argentine Republic.

Correspondence

María del Pilar Beruschi. Corrientes 486. (CP 1640) Martínez, Buenos Aires, Argentine Republic | piliberuschi@yahoo.com.ar

Introduction

Mucous membrane pemphigoid comprises a group of subepithelial immunobullous diseases mainly affecting mucous membranes and secondly the skin. Evolution occurs by recurrent outbreaks characterized by the appearance of blisters, erosions, and marked scarring.¹

Most frequent location is oral mucosa, followed by conjunctiva, skin, pharynx, external genitals, nasal mucosa, larynx, anus, and esophagus. Cicatricial sequelae are an important cause of morbidity and disability; if involving larynx or esophagus, they may lead to death.²

This work comprises 14 years' observation experience of this infrequent pathology.

Objectives

To describe epidemiological aspects (age, gender distribution, history of ocular injury or use of eye drops for glaucoma treatment), clinical aspects (consultation cause, evolution time from symptoms onset to diagnosis, stage of ocular disease), and the evolution of mucocutaneous lesions in our patients.

Design

Retrospective, observational, descriptive.

Materials and methods

The study included 41 patients with confirmed diagnosis of mucous membrane pemphigoid, who appeared at the Dermatology Department of our Hospital between June 1994 and June 2008. A clinical examination of skin and mucous membranes was performed in all patients. Ocular involvement was assessed by the ophtalmologist and classified according to the Foster staging system, which describes four stages:

- *Stage I*: subconjunctival fibrosis (Figure 1).
- *Stage II*: shortening of inferior fornix (**Figure 2**).
- *Stage III*: symblepharon (**Figure 3**).
- *Stage IV*: ankyloblepharon (**Figure 4**).³

Diagnosis was confirmed by conjunctival (in patients with only ocular involvement) or skin biopsy. Samples were analyzed with hematoxilin-eosin stain and direct immunofluorescence in all cases (**Figures** 7 and **8**).¹

All patients received systemic and local treatment. Systemic treatment included: dapsone, methylprednisone, cyclophosphamide, azathioprine, metothrexate, cyclosporine, colchicine and antibiotics. Local treatment consisted of tear substitutes, antibiotics, corticosteroids, and cyclosporine.

Stage IV patients received no immunosuppressive treatment, only ocular lubricants and antibiotics for the treatment of infectious complications.

Average patient follow-up was 38 months, with a 1 to 97-month range. Ocular disease remission was construed as the absence of inflammatory activity (white eye). Skin lesion remission consisted in complete blister epithelization and the absence of new lesions.

Results

Of the 41 patients included in the study, 26 were female and 15 were male.

Female:male ratio was 1.7:1.

Average age at diagnosis was 60 years, with a 32 to 82-year range.

Nineteen patients (46.34 percent) had history of severe ocular injury. Most frequently recorded trauma background was surgery (10 patients), followed by trauma (6 patients), Stevens-Johnson's syndrome (3 patients), severe conjunctivitis (2 patients), ophtalmic zoster (1 patient), contact with metal dust (1 patient).

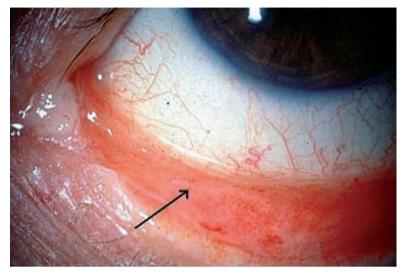
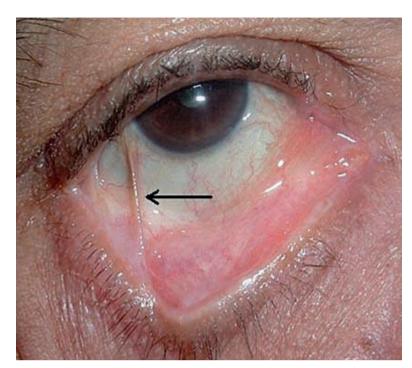
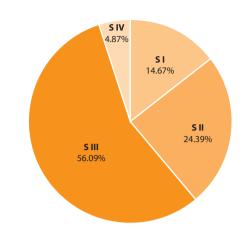


Figure 1. Stage I. Subconjuncival fibrosis (arrow).

Figure 2. Stage II. Arrow indicates inferior fornix shortening.

Three patients had association of different traumatic events. Seven of the 41 patients (17.07 percent) referred use of eyedrops for treatment of glaucoma. All 41 patients had conjunctival mucosa involve-


ment; 39 patients had only ocular involvement, and 2 patients had conjunctival, oral and cutaneous involvement (Figures 5 and 6) (Table 1).


Chronic conjunctivitis was the most frequent consultation cause in 33 patients (80.48 percent); 5 (12.19 percent) consulted for dry eye. The 2 patients with skin lesions (4.87 percent) consulted first at the Dermatology Department, where diagnosis was confirmed. One patient (2.43 percent) consulted for epiphora.

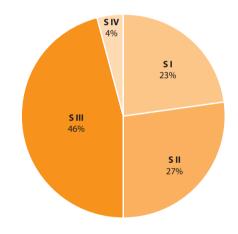
In 41.46 percent of patients, diagnosis was set 10 years after symptom onset (**Table 2**).

In 25 patients (60.96 percent), diagnosis was confirmed in advanced stages of ocular disease (**Chart 1**).

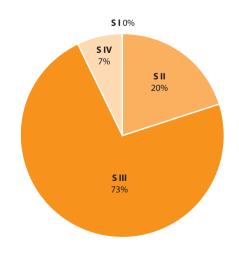
When female and male populations were analyzed separately, we found that half of females had diagnosis in stages I and II, while 79.99 percent of men had diagnosis in stages III and IV (**Chart 2** y **3**).

Chart 1. Ocular disease stage (S) at diagnosis (n = 41).

Figure 3. Stage III. Symblepharon (arrow).


Figure 4: Stage IV. Ankyloblepharon. Arrows mark fusion of tarsal conjunctiva and bulbar conjunctiva, and corneal clouding.

In the 2 patients with cutaneous and oral lesions, remission was achieved in skin and oral mucosa 2 month after onset of treatment. Remission of ocular disease occurred only in 16 patients (39.02 percent).


Remission occurred in 83.33 percent of the cases in stage I; this percentage decreased when therapy was started in more advanced stages (**Table 3**). Of the 9 patients remitting in stages I and II, 7 remained in this condition between 3 months and 2 years after treatment discontinuation.

All remitting patients in stage III required continuing support medication. Two patients progressed from stage II to III due to early medication discontinuation.

Two patients progressed from stage III to IV, one due to irregular treatment compliance and the other due to lack of response.

Chart 2. Ocular disease stage (S) in female (n = 26).

Chart 3. Ocular disease stage (S) in males (n = 15). S I 0%

	1. CASE-C							
Case	Gender	Age	Location	01	ET	OS	F-up	Evolution
1	F	69	Ocular	-	29y		38m	R
2	F	57	Ocular	-	40y		60m	
3	F	58	Ocular	-	10y		64m	R
4	F	59	Ocular	-	6m	II	97m	R
5	F	56	Ocular	-	8y	1	92m	R
6	F	56	Ocular	С	30y		60m	R
7	F	58	Ocular	T+ Sx	35y	II	67m	R
8	F	45	Ocular	-	2y	1	48m	R
9	F	73	Ocular	S	2y	1	48m	R
10	F	72	Ocular	Т	18y	- 111	72m	R
11	F	63	Ocular	S	10y	- 11	2m	R
12	F	67	Ocular	T+ Sx	15y	- 111	55m	NA
13	F	34	Ocular	SSJ	30y	- 111 -	90m	R
14	F	72	Ocular	Sx	бу		22m	1
15	F	68	Ocular	-	2y		19m	R
16	F	55	Ocular	-	15y	IV	16m	-
17	F	89	Ocular	-	5у		60m	NA
18	F	51	Ocular	-	2y		77m	R
19	F	82	Ocular	Sx	2y	- 11	3m	1
20	F	83	Ocular	-	2y	- 11	1m	NA
21	F	77	Ocular	-	12y		2m	R
22	F	64	Ocular	-	10y	- 11	43m	Р
23	F	60	Ocular	T+Sx+C	7у		16m	NA
24	F	32	Ocular	-	9у		1m	NA
25	F	32	Ocular	Sx	3m	1	3m	NA
26	F	56	Ocular	HZ	5у		12m	NA
27	М	45	Ocular	-	4y	- 111	6m	NA
28	М	55	Ocular	MD	1y	- 11	39m	1
29	М	55	Ocular	Т	4y		89m	Р
30	М	70	Ocular	-	20y		36m	Р
31	М	67	Ocular	-	5у		39m	1
32	М	54	Ocular	-	10y		42m	1
33	М	74	Ocular	-	4y		33m	1
34	М	64	Ocular-skin-oral	-	2y		16m	R
35	М	79	Ocular	Sx	Зy	- 11	81m	R
36	М	34	Ocular	SSJ	22y	IV	18m	-
37	М	64	Ocular	Т	30y		6m	1
38	М	45	Ocular-skin-oral	-	бу		72m	-
39	М	41	Ocular	SSJ	30y		5m	NA
40	М	80	Ocular	Sx	4y		7m	1
41	М	76	Ocular	-	бу		27m	1

TABLE 1. CASE-CONTROL STUDY.

Nine of the total patients were not assessed due to control failure or treatment discontinuation (Table 3).

Discussion

Mucous membrane pemphigoid is a rare disease of unknown incidence and prevalence. An incidence between 1:12,000 and 1:40,000 is estimated, although subdiagnosis is suspected, especially in early stages of the disease.^{4,5} Some cases have been described in children, but the usual age

< 6 months	1 (2.43 %)
6 months – 2 years	2 (4.87 %)
2 years to 5 years	12 (29.96 %)
5 years – 10 years	9 (21.5 %)
> 10 years	17 (41.6 %)

TABLE 3. OCULAR INVOLVEMENT EVOLUTION.

TABLE 2. EVOLUTION TIME BEFORE DIAGNOSIS.

	S I (n=6)	S II (n=10)	S III (n=23)	S IV (n=2)
Remission	5	4	7	0
Inflammato- ry activity	0	2	8	0
Progression	0	2	2	2
Non-assess- able	1	2	6	0
Remission percentage	83.33%	40%	30.43%	0%

at diagnosis is from 60 to 80 years.^{6,9} A female dominance is observed, with a 1.5-2.2:1 ratio matching our case material.^{9,10}

Etiopathogenesis is unclear, but as in all autoimmune diseases, both genetic and environmental factors are probably included.¹¹

The presence of HLA-DR4 allele may increase risk of ocular disease.^{12,13} Prevalence of HLA-DQB1 0301 allele was described in patients with only ocular disease, but was later found associated with all locations of the disease.^{14,15} This allele may be related to production of IgG against basement membrane antigens. A relation between this allele and severity of the disease is also suggested.¹⁵

The condition is characterized by production of immunoglobulin G (IgG) autoantibodies targeting different molecules present in the basement membrane area, such as 180-kDa bullous pemphigoid antigen (BPAg 180), b4 integrin, and laminin V.¹⁶⁻²³

Although the role of environmental factors is still unclear, it is believed that antibodies produced against infectious agents or drugs may cross-react with basement membrane antigens (molecular mimetism). Exposure of conjunctival epithelium antigens caused by severe ocular injury (surgeries, trauma, burns, Stevens-Johnson syndrome, and others) may favor their processing by immune system cells.²⁴⁻²⁶

Many drugs are also described, especially eyedrops indicated for treatment of glaucoma, as mucous membrane pemphigoid triggering factors.²⁷⁻³² We found both types of background in our case material.

The disease involves mainly mucosae. Locations are, in order of frequency: oral mucosa (85 percent), conjunctiva (64 percent), skin (24 percent), pharynx

ET: evolution time before diagnosis. OS: ocular disease stage. y: years. m: months. F-up: followup. OI: ocular injury. C: conjunctivitis. T: trauma. Sx: surgery. SSJ: Stevens-Johnson syndrome. HZ: herpes zoster. MD: metal dust. R: remission. I: improvement. P: progression. NA: non-assessable.

Figure 5. Skin involvement: general bullous eruption.

Figure 6. Oral mucosa erosions.

(19 percent), external genitals (17 percent), nasal mucosa (15 percent), larynx (8 percent), anus (4 percent), an esophagus (4 percent).^{2,9}

Oral involvement usually appears as desquamative gingivitis and mucosal erosions.¹⁰

Response to treatment is usually favorable, and may occur with local therapy.¹

Conjunctiva may be the only location of disease, as occurred with most of our patients.^{3,33,34} It starts with a chronic conjunctivitis developing in outbreaks.^{35,36} In time, conjunctival fibrosis with fornix shortening and production of symblepharon occurs. Eyelids fuse and conjunctival sacs obliterate in late stages (ankyloblepharon).^{3,33,36} Fibrosis also obliterates channels, tear glands and Meibomian glands, with alterations of the tear layer. Tarsal conjunctiva scarring causes trichiasis and entropion, which as the dry eye cause corneal damage with pannus formation, ulceration, posterior clouding of the cornea, and blindness.^{33,35,36}

All these alterations were evidenced in our case material.

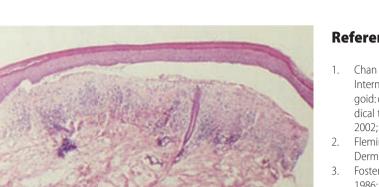
Skin lesions are rarely predominant. Two types of skin lesions are described. The first is a general bullous eruption similar to bullous pemphigoid.^{2,3,37,38} The second form is located in head and neck (Brunsting-Perry), and consists of occasionally itching erythematous base blisters that heal with atrophy and may leave cicatricial alopecia if the scalp is involved.³⁹⁻⁴¹

A vegetating form is also described.⁴²

Marked clinical and immunologic variability exists among patients. Four main groups are described, probably related to different target antigens. One group refers to only ocular disease, with IgG antibodies targeted against b4 integrin, or IgA antibodies against a 45-kDa antigen.^{18,43} The second group consists of patients with mucocutaneous lesions and IgG and IgA against BPAg 180.²⁰

The cicatricial phenotype differs from bullous pemphigoid, probably because the antibodies recognize different antigen molecule epitopes more deeply located in the basement membrane.

Only oral variety refers to a group of IgG against BPAg 180.⁴⁴


The fourth group includes patients with multiple mucosal and no skin involvement.¹¹

A last group of patients with anti-laminin V antibodies is described, which may be associated with neoplasias.^{21,22,45,46}

Currently, mucous membrane pemphigoid is understood as a set of syndromes characterized by having autoantibodies with different specificities, and not as one single entity.^{1,2,11}

Clinical differential diagnosis include: bullous pemphigoid, epidermolysis bullosa acquisita, linear IgA dermatosis, bullous lupus, and paraneoplastic pemphigus.^{2,11}

Drug-induced ocular pseudo-pemphigoid must



Figure 7. Subepidermal blister (H-E).

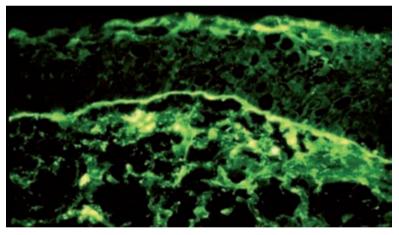


Figure 8. DIF of conjunctiva. Lineal IgG deposit on basement membrane.

also be ruled out, as well as other causes of non-immunological cicatricial conjunctivitis.47,48

Ocular disease was dominant in our case material, because most of our patients came from an ophtalmology hospital.

Epidemiological, clinical and evolution aspects coincided with data published in the available literature.

In all cases, ocular involvement marked prognosis of disease. Early stage therapy allowed a higher remission percentage.

In advanced stages, disease complications complications (dry eye, infections, corneal abrasion caused by eyelashes) generate a permanent inflammatory stimulus that contributes to disease activity perpetuation, thus hindering remission.49,50

Since it is a disabling and occasionally fatal disease, we wish to highlight the need for an early diagnosis in order to implement timely therapy and multidisciplinary approaches, thus preventing or delaying irreversible sequelae occurrence.

References

- Chan LS, Ahmed AR, Anhalt GJ, Bernauer W, et al. The First International Consensus on Mucous Membrane Pepmphigoid: definition, diagnostic criteria, pathogenic factors, medical treatment and prognostic indicators. Arch Dermatol 2002; 138:370-379.
- Fleming TE, Korman NJ. Cicatricial pemphigoid. J Am Acad Dermatol 2000; 43:571-591.
- Foster CS. Cicatricial pemphigoid. Trans Am Ophthalmol 1986; 84:527-663.
- Mondino BJ, Stuart IB. Ocular cicatricial pemphigoid. 4 Ophthalmology 1981; 88:95-100.
- Nguyen QD, Foster CS. Cicatricial pemphigoid: diagnosis and treatment. Int J Ophthalmol Clin 1996; 36:41-60.
- Jolliffe DS, Sim-Davis D. Cicatricial pemphigoid in a young girl. Clin Exp Dermatol 1977; 2:281-284.
- 7. Rogers M, Painter D. Cicatricial pemphigoid in a 4-year-old child. Aust J Dermatol 1981; 22:21-23.
- Rosenbaum MM, Esterly NB, Greenwald MJ, Gerson CR. Cicatricial pemphigoid in a 6-year-old child: report of a case and review of the literature. Pediatr Dermatol 1984; 2:13-22.
- 9. Ahmed AR, Hombal SM. Cicatricial pemphigoid. Int J Dermatol 1986; 25:90-96.
- 10. Laskaris G, Sklavounou A, Stratigos J. Bullous pemphigoid, cicatricial pemphigoid and pemphigus vulgaris: a comparative clinical survey of 278 cases. Oral Surg Oral Med Oral-Pathol 1982; 54:656-662.
- 11. Bruch-Gerharz D, Hertl M, Ruzicka T. Mucous membrane pemphigoid: clinical aspects, immunopathological features and therapy. Eur J Dermatol 2007; 17:191-200.
- 12. Zaltas MM, Ahmed R, Foster CS. Association of HLA DR4 with ocular cicatricial pemphigoid. Curr Eye Res 1989; 8:189-193.
- 13. Nayar M, Wojnarowska F, Venning V, Taylor CJ. Association of autoimmunity and cicatricial pemphigoid: is there an immunogenetic basis? J Am Acad Dermatol 1991; 25:1011-1015
- 14. Chan LS, Hommerberg C, Cooper KD. Significantly increased occurrence of HLA DQB, * 0301 allele in patients with ocular cicatricial pemphigoid. J Invest Dermatol 1997; 108:129-132.
- 15. Setterfield J, Theron J, Vaughan RW, Welsh KI, et al. Mucous membrane pemphigoid HLA DQ B1* 0301 is associated with all clinical sites of involvement and may be linked to antibasement membrane IgG production. Br J Dermatol 2001; 145:406-414.
- Bédane C, Mc Millan JR, Balding SD, Bernard P, et al. Bu-16. llous pemphigoid and cicatricial pemphigoid autoantibodies react with ultrastructurally separable epitopes on the BP180 ectodomain: Evidence that BP 180 spans the lamina lucida. J Invest Dermatol 1997; 108:901-907.
- Murakami H, Nishioka S, Setterfield J, Bhogal, et al. Analysis 17. of antigens targeted by circulating Ig G and Ig A autoantibodies in 50 patients with cicatricial pemphigoid. J Dermatol Sci 1998; 17:39-44.
- 18. Tyagi S, Bhol K, Natarajan D, Livir-Rallatos C, et al. Ocular cicatricial pemphigoid antigen: partial sequence and biochemical characterization. Proc Natl Acad Sci USA 1996; 93:1471-1479.

- Chan RY, Bhol K, Tesavihul N, Letko E, et al. The role of antibody to human ß4 integrin in conjunctival basement membrane separation: possible in vitro model for ocular cicatricial pemphigoid. Invest Ophthalmol Vis Sci 1999; 40:2283-2290.
- Ogama N, Setterfield JF, Powell AM, Sakuma-Oyama Y, et al. Bullous pemphigoid Antigen II (BP 180) and its soluble extracellular domains are the mayor autoantigens in mucous membrane pemphigoid: the pathogenic relevance to HLA class II alleles and disease severity. Br J Dermatol 2006; 154:90-98.
- Lazarova Z, Hsu R, Yee C, Yancey KB. Antiepiligrin cicatricial pemphigoid represents an autoinmune response to subunits present in laminin 5 (alpha3beta3gamma2). Br J Dermatol 1998; 139:791-797.
- 22. Nousari HC, Rencic A, Hsu R, Yancey KB, et al. Antiepiligrin cicatricial pemphigoid
- with antibodies against the . 2 subunit of laminin 5. Arch Dermatol 1999; 135:173-176.
- 23. Leverkus M, Schmidt E, Lazarova Z, Bröcker EB, et al. Antiepiligrin cicatricial pemphigoid. Arch Dermatol 1999; 135:1091-1098.
- Chan LS, Vanderlugt C, Hashimoto T, Nishikawa T, et al. Epitope spreading: lessons from autoimmune skin diseases. J Invest Dermatol 1998; 110:103-109.
- Nayar H, Wojnarowska F, Venning V, Taylor CJ. Association of autoimmunity and cicatricial pemphigoid: is there an immunogenetic basis? J Am Acad Dermatol 1991; 25:1011-1015.
- Chan LS, Soong HK, Foster CS, Hammerberg C, et al. Ocular cicatricial pemphigoid occurring as a sequela of Stevens-Johnson syndrome. JAMA 1991; 266:1543-1546.
- 27. Vassileva S. Drug induced pemphigoid: bullous and cicatricial. Clin Dermatol 1998; 16:379-387.
- Pouliquen Y, Patey A, Foster CS, Goichot L, et al. Drug induced cicatricial pemphigoid affecting the conjunctiva: light and electron microscopic features. Ophtalmology 1986; 93:775-783.
- 29. Fiore PM, Jacobs IH, Goldberg DB. Drug-induced pemphigoid: a spectrum of diseases. Arch ophthalmol 1987; 105:1660-1663.
- Butt Z, Kaufman D, Mc Nab A, Mc Kelvie P. Drug induced ocular cicatricial pemphigoid: a series of clinic pathological reports. Eye 1998; 12:285-290.
- 31. Van Joost T, Crone RA, Overdijk AD. Ocular cicatricial pemphigoid associated with practolol therapy. Br J Dermatol 1976; 94:447-450.
- 32. Van Joost T, Faber WR, Manuel HR. Drug induced anogenital cicatricial pemphigoid. Br J Dermatol 1980; 102:715-718.
- 33. Mondino BJ, Linstone FA. Ocular pemphigoid. Clin Dermatol 1987;5:2835.
- 34. Marini MA, Remorino L, Ubaldini G, Magariños y cols. Penfigoide de las

mucosas. Presentación de dos casos clínicos y actualización del tema. Dermatol Arg 2004; 2:117-122.

- Ahmed AR, Kurgis BS, Rogers RS. Cicatricial pemphigoid. J Am Acad Dermatol 1991; 24:987-1001.
- Mutasim DF, Pelc NJ, Anhalt GJ. Cicatricial Pemphigoid. Dermatol Clin 1993; 11:499-510.
- Spillman DH, Antognoli SA, Gimenez MF, Tausk FA. Dermatitis ampollar mucosinequiante y atrofiante. Hallazgos clínicos, histopatológicos e inmunológicos. Rev Arg Dermatol 1982; 63:197-205.
- Kurzhals G, Stolz W, Maciejewski W, Karpati S, et al. Localized cicatricial pemphigoid of the Brunsting-Perry type with transition into disseminated cicatricial pemphigoid. Arch Dermatol 1995; 131:580-585.
- 39. Michel B, Bean SF, Chorzelski T, Fedele C. Cicatricial pemphigoid of Brunsting-Perry. Arch Dermatol 1997; 113:1403-1405.
- Honeyman J, Navarrete W, De la Parra MA, Pinto A. Penfigoide cicatricial cutáneo localizado en cabeza y cuello (Brunsting-Perry). Arch Argent Dermatol 1980; XXX:135-138.
- Vitale A, Valdez RP. Penfigoide cicatrizal localizado (variedad Brunsting– Perry). Arch Argent Dermatol 1993; XLIII:253-257.
- 42. Wolff K, Rappersberger K, Steiner A, Konrad K. Vegetating cicatricial pemphigoid. Arch Dermatol Res 1987; 279:s30-s37.
- Smith EP, Taylor TB, Meyer LJ, Zone JJ. Identification of a basement membrane zone antigen reactive with circulating Ig A antibody in ocular cicatricial pemphigoid. J Invest Dermatol 1993; 101:619-623.
- 44. Rashid KA, Stern JNH, Ahmed AR. Identification of an epitope within human integrine alpha 6 subunit for the binding of autoantibody and its role in basement membrane separation in oral pemphigoid. J Immunol 2006; 176:1968-1977.
- Domloge Hultsch N, Anhalt GJ, Gammon WR, Lazarova Z, et al. Antiepiligrin cicatricial pemphigoid: a subepitelial bullous disorder. Arch Dermatol 1994; 130:1521-1529.
- 46. Egan CA, Lazarova Z, Darling TN, Yee C, et al. Antiepiligrin cicatricial pemphigoid and relative risk for cancer. Lancet 2001; 357:1850-1851.
- 47. Patten JT, Cavanagh HD, Allansmith MR. Induced ocular pseudopemphigoid. Am J Ophthalmol 1976; 82:272-276.
- Hirst LW, Werblin T, Novak M, Green WR, et al. Drug induces cicatrizing conjunctivitis simulating ocular pemphigoid. Cornea 1982; 1:121-128.
- Neumann R, Tauber J, Foster CS. Remission and recurrence after withdrawal of therapy for ocular cicatricial pemphigoid. Ophthalmology 1991; 98:858-862.
- 50. Elder MJ, Bernauer W, Leonard J, Dart JKG. Progression of disease in ocular cicatricial pemphigoid. Br J Ophthalmol 1996; 80:292-296.